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Introduction



50+1 Years of Laser Development

� Important parameter: 
dim.less amplitude

� Energy gain of     
across laser wavelength

� :     relativistic

(adapted from Mourou, Tajima, Bulanov, RMP 78, 2006) 



Regime of Extremes

� Current magnitudes:

Power 

Intensity

� Largest e.m. fields currently available in lab

� But: fields pulsed and alternating

Intensity

Electric field

Magnetic field



2 Laser Projects (of many)

� CLF Vulcan 10 PW

� 1023Wcm-2

� Construction by 2014 (?)

� Budget: 20 M£ � Budget: 20 M£ 

� ELI (‘4th pillar’)

� >100 PW (Exawatt ?)

� >1025Wcm-2

� Budget: several 100 M€

� Decision by 2012 (?)

Building (projected)



Why bother?

� High intensity (          ) = uncharted region of 
standard model (cf. phase diagrams)
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2. Strong Laser Fields: Theory



Modelling a laser

� In order of increasing complexity:

� Plane wave

� Infinite (IPW)

� Pulsed (PPW)

��� ……

� Finite T-duration

� Infinite transverse extension

�Gaussian beam:

� Finite transverse waist w

� Finite longitudinal extension z0

���

T



Modelling a laser: Plane wave

� Null wave vector

� Electromagnetic field 

� only dependent on invariant phase

� Transverse:� Transverse:

�Null:

� No intrinsic invariant scale!

� Need (probe) momentum    to build invariants

� E.g.                       (TH, A. Ilderton, Opt. Comm. 2009)



Modelling a laser: Gaussian beam

� Finite geometry parameter: 

� PW limit:         

� Transverse fields:

(Davis 1978, Narozhny et al. 2004)

� Transverse fields:

� Longitudinal fields: 

� Invariants not null but :

ET

BT

EL

BL
z



Charge in IPW

� Solution of Lorentz force eq.: rapid quiver motion 
(momentum       ) 

� Charge acquires quasi-momentum

� Longitudinal addition – consequence:

� Effective mass squared

� The basic intensity effect – yet unobserved so far!

(Sengupta 1951, Kibble 1964)



Charge in PPW

� = proper time average

�Mass shift         depends on 
pulse duration, 

� gradually builds up with 
number    of cycles/pulse       

‘Formation time’
number    of cycles/pulse       

� Finite size effects

(temporal & longitudinal)  

�NB: ultra short pulses

Kibble, Salam, Strathdee 1975

‘Formation time’
Ritus 1979



� Radiation Reaction: ever debated since Lorentz 1892 

� Lorentz-Abraham-Dirac eq. → Landau-Lifshitz (LL) eq.

Charge in PW with RR

Lorentz force

� time parameter

� Q: Can one see RR? 

� Analytic solution for PW (Di Piazza, 2008, Harvey; TH, Iji, Langfeld 2011)

� RR important when               (     = frequency ‘seen’ by probe     )

� ‘fixed target mode’:                    ; ‘colliding mode’: 

Lorentz force



� Solution of LL eq.

� RR signal enhanced by 

pulse duration

� Relative energy loss for 
head-on collision 

RR signature: energy loss in pulse

� pulse duration

� intensity

� and Doppler upshift

with RR

w/o RR

a0 =150

γ0 =100



Quantum parameters

� Vacuum sector:

� ‘critical’ electric field (Sauter 1931, Schwinger 1951)

� and    : relativity    quantum mechanics: QED

� Charge sector:

� Laser energy as seen by probe electron

� NB: not necessarily small (Doppler shift !) 



� Ingredients:

� Probe photons

� Electrons ‘dressed’ by laser photons (---------------)

Strong-field QED

� “Furry Picture” Diagrams:

Scattering Vac → VacVacuum polarisation



Main issues

� Intensity dependence of elementary processes     
(see below     )���(see below     )

� Finite (beam) size effects (see below     )

� Beyond plane waves (?     )

� Classical vs. quantum (including RR) (?     )

���

���

���

���



A. Trees

3. Strong Laser Fields: Examples



3.1 Nonlinear Compton Scattering (NLC)

3. Strong Laser Fields: Examples



NLC scattering

� Expand Furry picture Feynman diagram →

� Sum over all processes of the type

Schott 1912; Nikishov/Ritus 1964, 
Brown/Kibble 1964, Goldman 1964 

emission



NLC: main features

� No energy threshold – can be done now!

� Classical limit: NL Thomson (          or                    )

� For                : frequency upshift

� Used for 

X-ray generation 

� Nonlinearity:

Terawatt laser pulse
(a0 = 0.05) 

Electron Bunch
(γe = 235)

Femtosecond
gamma-ray pulse
(0.78 MeV)

T-REX, LLNL (2008)



NLC contd

� For high intensity,

� modified Compton edge due to mass shift

� In particular: 

� Higher harmonics: n >1 (Chen, Maksimchuk, Umstadter, Nature1998) 

�Overall blueshift maintained as long as 

� Redshift of n=1 edge



NLC spectrum: main a
0  
effects

Linear Compton 

C. Harvey, TH, A. Ilderton, 
PRA 79, 2009

edge

Higher 
harmonics, n >1

Red-shift



a
0 
dependence (lab)

Tuning a
0
similar to changing frame: when  

‘inverse’ Compton → Compton 
C. Harvey, TH, A. Ilderton, PRA 79, 2009



Finite Size Effects 

Weakly focussed: Strongly focussed:

laserlaser

e–
e–

e–

PW results ‘realistic’ PW results get modified



NLC vs. RR (in progress) 

� Linear Thomson: modified by RR (Dirac 1938, Heitler 1941, Gora 1943) 

� Compare with NLC

� Hence: 

� RR must be classical limit of higher order radiative 
correction (IR photons?)

� Is there classical regime where RR gets boosted by     

(cf. LL eq.) ?         

QM NL



3.2 Laser Induced Pair Production (PP)

3. Strong Laser Fields: Examples



Stimulated PP

� Obtained from NLC via crossing

� Main new feature: threshold       

� Experiment SLAC E-144 (1995): combine both 
processes @ high energies (                   )

� → Quantum regime…



SLAC E-144 (Bula et al. ‘96, Burke et al. ’97)

� Two stages: NLC

stimulated PP

� New development: prediction of pair cascades     
(Bell, Kirk et al.; Narozhny, Fedotov, Ruhl et al.)

Gil Eisner, Photonics Spectra 1997



Stimulated PP: finite-size effects

� IPW: 

� triple-diff rate = ‘delta 
comb’ 

� above threshold (    ) 

� PPW: 

� dependence on cycles 
per pulse,

� Sub-threshold signals

� IPW approached for  

TH, A. Ilderton, M. Marklund, PLB, 2010



B. Loops

3. Strong Laser Fields: Examples



3.3 Vacuum Birefringence (VB)

3. Strong Laser Fields: Examples



Heisenberg, Euler 1936

“...even in situations where the [photon] energy is 
not sufficient for matter production, its virtual 
possibility will result in a ‘polarization of the 
vacuum’ and hence in an alteration of Maxwell’s 
equations.”



Optical Theorem (Trees → Loops)

� Total PP rate can be obtained via

� Virtual          ‘dipoles’ feel presence of

� Re    : change of polarisation state

� diagonalisation of     (for X-fields = PW      )

� two nontrivial eigenvalues →

Vacuum polarisation



Vacuum birefringence (Brezin, Itzykson 1970)

� Two indices of refraction (Toll 1952)

Calcite crystal

� Two indices of refraction (Toll 1952)

� Dim.less (small) parameters: 

� Field strength:

� Probe frequency:

� fine structure const:



Experiment: measure ellipticity

Phase retardation of e+



Analysis (TH et al., Opt. Comm., 2006 )

� ellipticity (squared)

� Power law suppressed…� Power law suppressed…

� Optimal scenario @ ELI 

� large intensity:

� large probe frequency (X-ray,               ):   

� New record in polarisation purity:                 @ 6 keV
(Marx et al., Opt. Comm., 2010)



� for    : 3 GeV @ ELI, 10 GeV @ Vulcan10PW   

Large-ν birefringence via NLC

(Toll 1952 
TH, O. Schröder
2006

� NB: SLAC E-144 had 

2006
Shore 2007)

(K. Langfeld)

Anomalous dispersion Absorption → PP



3.3 Light-by-Light Scattering

3. Strong Laser Fields: Examples



γ-γ scattering

� Predicted: 1930’s (Halpern 1934, Euler/Kockel 1935, Euler/Heisenberg 1936)

� But never observed in lab!

� Idea:                 (Lundström et al. 2005)

Feynman diagrams: Artistic view:

≈

Feynman diagrams: Artistic view:



γ-γ scattering contd

� Low-energy X-section (Euler-Heisenberg approxn):

� Laser photon density:� Laser photon density:

� Photon number in focus volume           :

� Number of emitted γ’s @



3.4 Vacuum Pair Production

3. Strong Laser Fields: Examples



Im ~

� Feynman diagram

Spontaneous (vacuum) PP

‘vacuum 
breakdown’

� Identically zero for PWs as   

� Substantial when

� Rate exponentially suppressed (Schwinger 1951) 



Vacuum PP contd

� With lasers: very difficult!

� Need to fight both

� Exponential suppression

� Null field (plane wave) character� Null field (plane wave) character

� Expect rate for e.g. Gaussian beams

� Alternative: counter-propagating lasers (standing wave)? 



Summary

vacuum PP

γγ scattering

NL Compton/Thomson

Vacuum birefringence

Stimulated PP



Conclusion

� Laser power approaching exawatt regime

� Extreme field physics @ low energy

� Lab astrophysics 

� New physics (axions, hidden photons, ... ?)� New physics (axions, hidden photons, ... ?)

� Laser QED→ Sauter-Schwinger limit

� Theory (→ dependence + signatures) 

� Challenges: 

� Finite size effects

� Beyond plane waves 

� Numerical approaches

� Radiation reaction: Classical vs. quantum



…for your attention

Thank you very much...



Appendix



Within optical system
outside 
optical system

Chirped Pulse Amplification (CPA)

Problem: optical damage @

Solution:

oscillator amplifierstretcher compressor

pulse duration

1nJ

100 fs

1nJ

200 ps

1.3J

200 ps 

0.8J

150fs×20000 /20000

×10
9

10 fs

1..10 J few J

20 fs/10000

optical system

energy

contrast 1010

Courtesy R. Sauerbrey



4 cases of fields (Taub 1948)

� Table:

Name Special frame (SF) Invariants

Electromagnetic

Magnetic  

Electric

Null



Remarks on a0

� : energy density ‘seen’ by   

� : proper time average (see below)� : proper time average (see below)

� For non-periodic fields (pulses):

� Note: is not a vacuum field characteristic

(Kibble et al. 1975)



Aside: Higher harmonics

� Harmonics n=2 and n=3

observed in ‘relativistic 
Thomson scattering’ 
using linearly polarised 
laser ( )

2ωωωω

laser (a0=1.88)

� Signal: quadrupole and 
sextupole pattern in 
angular distribution
(Chen, Maksimchuk, Umstadter, 
Nature 1998) 

3ωωωω



Wave train vs. pulse:          vs.

→ Spectrum = fingerprint of pulse!


